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The threshold load for crack initiation resulting from Vickers indentation is investigated in
chemically tempered aluminosilicate glass. Aluminosilicate glass was ion-exchanged in a
potassium nitrate salt bath at temperatures of 380, 400, and 420◦C for times ranging from
two to sixty minutes. The ion-exchange profiles were investigated using an electron
microprobe, and the diffusion coefficients and activation energy for ion-exchange
elucidated. Residual stresses were not measured directly, but were estimated using an
indentation fracture analysis. A physically-based fracture model is developed to describe
the threshold indentation load data. From kinetic and indentation threshold models,
predictions of crack initiation thresholds are made over a wide range of ion-exchange
conditions. C© 2004 Kluwer Academic Publishers

1. Introduction
Chemical tempering (ion-exchange) is one of many
methods for strengthening glasses [1, 2]. Na+- K+ ex-
change in aluminosilicate glasses introduces compres-
sive stresses at the surface, and these stresses act as
an effective toughening mechanism [3, 4], thereby in-
creasing the strength. However, the susceptibility of
a brittle material to damage initiation from handling
and service conditions (such as abrasion or particle im-
pact) is, in many ways, as important a design metric as
the toughness of the material (resistance to flaw propa-
gation). Indentation is a useful technique for studying
the mechanics of damage initiation under abrasive or
particle impact conditions [5, 6]. This work explores
the effect of ion-exchange time and temperature over a
broad range of conditions on the load threshold for ra-
dial crack initiation (the indentation load beneath which
radial cracks will not form) from Vickers indentation.

Fig. 1 is an example of this phenomenon. Fig. 1a is an
untreated aluminosilicate glass indented with a Vickers
indenter at a load of 150 N. Radial cracks have formed at
the corners of the indentation impression. Such cracks
lie perpendicular to the material surface, and are consid-
ered to be representative of strength-controlling flaws.
Fig. 1b is the same glass, subjected to ion-exchange and
indented under the same conditions. The compressive
surface stresses have suppressed cracking at the site
[7–10]. This is a clear demonstration that compres-
sive surface stresses not only have the capability to
strengthen a glass with an existing flaw population, but
also reduce susceptibility to further strength degrada-
tion due to service. Cracks responsible for chipping and
wear (lateral cracks) are not considered in this work.
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A fracture-mechanics based model is developed that
links the depth and magnitude of the ion-exchange
stresses to the indentation cracking threshold. There are
many existing models that describe the mechanics of the
load threshold [7, 11–13]. The load threshold model in
this work is based on an indentation crack-threshold and
crack-extension model developed by Cook and Braun
[13], developed for the homogeneous toughening of
phase transformation. The model here is extended to
the inhomogeneous toughening mechanism of surface
stresses. In fact, the scales of the ion-exchange stress
profile and shear-nucleated indentation flaw nuclei are
similar, and therefore the details of the inhomogeneous
distribution of residual stresses become crucial to a de-
scription of the phenomenon. From diffusional kinetic
data measured from the array of exchange conditions,
and the indentation threshold model, predictions about
the general effect of time and temperature of exchange
on the indentation cracking threshold are made.

2. Experimental procedure
2.1. Ion-exchange and diffusion

profile measurement
Aluminosilicate (ALS) glass (Code 0317, Corning
Glass Works, Corning, NY), 2.2 mm thick, was cho-
sen because of the ease of Na+- K+ ion-exchange in
aluminosilicate glasses [1, 2, 14], and for comparison
to other ion-exchange mechanical strengthening work
[9].

A series of three exchange temperatures, chosen to
be above the melting point of the bath salt (KNO3) but
well below the softening point of ALS were used, with

0022–2461 C© 2004 Kluwer Academic Publishers 2399



Figure 1 (a) An optical micrograph of a 150 N indentation on unexchanged ALS glass with radial cracks emanating from the impression corners. (b)
A micrograph of a 150 N indentation on ALS ion-exchanged at 400◦C for 30 min. Radial cracking is suppressed by the compressive surface stresses
generated by the ion-exchange process. The surface traces of shear faults are visible in this micrograph.

six different exchange times at each temperature. The
treatment conditions are listed in Table I. Ion-exchange
was performed in a commercial salt bath (Mini-60, Kirk
Optical Co. Freeport, NY), modified to use a digital

T ABL E I Ion-exchange conditions

Temperature (◦C) Exchange times (min)

380 2, 5, 10, 20, 30, 60
400 2, 5, 11.5, 20, 30, 61
420 2, 5, 10, 20, 30, 60

temperature controller with a thermocouple. The tem-
perature of the bath was stabilized for at least one hour
in all experiments before the exchange process began.
The glass was held approximately 10 cm above the
molten salt for ten minutes before and after immersion
in the bath to avoid thermal shock damage. After ex-
change, the glass was rinsed under tap water to remove
residual frozen salt from the surface.

Ion concentration profiles near the surface were mea-
sured with an electron microprobe (JEOL 8900 Elec-
tron Probe Microanalyzer). Beam conditions for all ex-
periments were 10 nA current and 10 kV accelerating
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T ABL E I I Nominal and observed ALS compositions

Molecular
concentration (%) SiO2 Al2O3 K2O Na2O CaO MgO TiO2

Nominal 67.42 10.46 2.40 13.43 0.31 5.26 0.61
Experimental 67.9 10.5 2.5 12.9 0.4 5.1 0.7

voltage. Calibration of the X-ray spectrum to molec-
ular concentrations was performed with glassy geo-
logical standards. All known ionic components (except
Fe2O3 and SnO2, which are the most dilute species at
0.10 and 0.02% molecular concentrations, respectively)
were measured simultaneously to verify that Na+ and
K+ were the only mobile species. Table II demonstrates
the excellent agreement between the observed and nom-
inal molecular compositions of ALS.

A difficulty in making ion-concentration measure-
ments is that sodium is easily liberated from the glassy
matrix by a bright, high-energy electron beam. When
working with the very small beam spots (<1 µm) re-
quired to measure ion diffusion profiles in the glass,
the characteristic sodium signal was observed to de-
cay significantly over the course of several seconds,
making precise composition measurements difficult. To
avoid sodium “burn-out” affecting composition mea-
surements, the following scheme, shown schematically
in Fig. 2, was used to perform ion composition pro-
file measurements. The surface ion concentrations, Cs,
were measured quantitatively with a broad 30 µm beam
with a dwell time of 60 s. At these conditions, the beam
is weak enough such that decay of the Na+ signal is
not observed. The Bethe range of electron penetration
was calculated as approximately 1.3 µm at these beam
conditions [15, 16], and therefore the measured surface
concentrations are approximately representative of this
depth.

Figure 2 The experimental procedure for determining the surface con-
centrations and diffusion profiles for components of ALS glass. The
surface concentration, Cs, is determined by using a broad beam for a
long time. Composition profiles, C(x), as a function of depth, x , into the
bulk are obtained by scanning a fracture surface at high speed to avoid
sodium “burn-out”.

Concentration profiles were then measured by scan-
ning a cross-section of glass, formed via cleavage, from
the surface up to 100 µm into the interior of the glass.
Again, this is shown schematically in Fig. 2. Scans
were performed three times at different locations on
the cleaved surface. The beam spot size was approx-
imately 1 µm and the dwell time was 1 s. The dwell
time was too short for accurate quantitative measure-
ment of ionic concentrations. Instead, the surface and
bulk relative “concentrations” (X-ray counts) from the
cross-sectional scans were matched to the measured
concentrations at the surface and the bulk, and the rel-
ative concentration profiles were used to generate the
ion concentration profile in the glass. Within the reso-
lution of the microprobe experiment, the concentration
profiles indicate that only Na+ and K+ were mobile to
any significant degree during the diffusion process.

2.2. Indentation cracking
threshold measurements

For each of the ion-exchange time-temperature com-
binations in Table I, the threshold indentation load for
cracking with a Vickers indenter (in ambient air) was
found. A gravity-loaded indenter (Zwick Model 3212)
with a full-scale capacity of 300 N was used for all
experiments. For each sample, indentations were first
performed over a coarse range of loads. Subsequent in-
dentations were performed using a narrowed range un-
til the threshold load was determined to within a 15 N
resolution.

Crack formation at a sharp indentation site is a
stochastic process [10, 17], and there is slight variability
in the cracking behavior of indentations formed under
ostensibly identical conditions. Therefore, a definition
of the “threshold” load for cracking, Pth, must take this
variability into account. For the purposes of this work,
the threshold load for cracking was defined as the load
at or above which 60% of the possible radial cracks
(five indentations per indentation load, with one radial
crack formation site at the each of the four corners of
the impression) formed (within the resolution of the in-
dentation experiments). Fig. 3 is a representative plot of
the percentage of radial cracks formed as a function of
indentation load for a total of five indentations per load,
with the above definition of the threshold load shown
graphically. While the definition applies strictly to the
percentage of radial cracks formed at potential sites, it
was observed that cracks usually formed at all corners
of the impression, or at none. So, roughly, Pth is the
load at which three out of five indentations exhibited
radial cracking.

2.3. Surface stress estimation
The surface stress distribution in the glasses result-
ing from ion-exchange, σ (x), was not measured di-
rectly. An indentation crack length technique [18, 19]
was used to estimate the stresses at the surface. Crack
lengths were measured only near the threshold inden-
tation load; there was not a characterization of crack-
length as a function of indentation load for each system.
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Figure 3 Plot of the probability of radial crack initiation vs. indentation
load for an ALS glass ion-exchanged at 380◦C for 5 min. The threshold
load for cracking, Pth, is defined as the load at or above which radial
cracks form at 60% of prospective indentation sites. Each point represents
the average of five indentation experiments, or 20 radial crack formation
sites.

This technique has been used with some success, al-
though previous results from ion-exchanged glass [19]
and ion-implanted ceramics and glasses [20, 21] show
that there can be a significant underestimation of the
surface stresses. This is discussed further in the Results
section.

3. Results
3.1. Ion diffusion measurement
While there are two mobile species counter-diffusing
in the ion-exchange process studied here, charge neu-
trality requires that the diffusion rate be limited by the
slowest species, believed to be the heavier, larger K+
ion [22]. Therefore, when the glass is much thicker than
any characteristic diffusion length, ion diffusion may
be treated as a one-dimensional single-species diffu-
sion process. One-dimensional diffusion in a Cartesian
space is described by

C(x) = (Cs − C∞)

[
1 − erf

(
x

2
√

Dt

)]
+ C∞, (1)

where x is the spatial coordinate with origin at the sur-
face of the glass, Cs is the surface concentration, C∞
is the original concentration (the concentration within
the bulk of the glass), D is the diffusion coefficient and
t is time. Fig. 4 is a representative plot of concentration
data with fits of Equation 1. Because the surface and
bulk concentrations were measured and used to gen-
erate the concentration profiles from qualitative scan
data, only D was allowed to vary in making such fits
to the diffusion profiles. While fits to both K+ and Na+
data generate similar values for the diffusion coeffi-
cient, estimates of D from the K+ data are used exclu-
sively hereupon because of the lower noise and greater
expected accuracy of the measurement of K+, evident
from Fig. 4. Monte Carlo simulations [16] show that
the probed diameter of the X-ray signal for the K Kα

peak (∼3.3 keV) in a silica matrix should spread ap-

Figure 4 Representative plot of Na+-K+ ion-exchange concentration
profiles in ALS glass, from a 400◦C—60 min exchange. Plotted with the
experimental data is a fit of Equation 1 to both Na+ and K+ data. The
surface concentration Cs and bulk concentration C∞ are indicated for
K+.

proximately 1.1 µm. Although repeated profile scans
were indistinguishable, uncertainty in the determina-
tion of the location of the surface and beam spread in
the material make the practical spatial resolution on
the order of 1.5 µm. Measured diffusion coefficients
are in the range 10−14–10−15 m2 s−1, which agree with
other measurements of Na+-K+ diffusion coefficients
in aluminosilicate glasses [23].

The diffusion coefficient as a function of temperature
allows estimation of the activation energy for diffusion,
Q, through

D = D0 exp

(
− Q

kT

)
, (2)

where k is Boltzmann’s constant, T is temperature and
D0 is the diffusion coefficient prefactor. Fig. 5 is a plot

Figure 5 Logarithm of the measured diffusion coefficient, D, plotted
as a function of the reciprocal temperature. Diffusion coefficients are
averages from ion-exchanges in the 20–60 min range. A fit of the diffu-
sion data, shown as a dashed line, to Equation 2 estimates the activation
energy for diffusion as 0.75 eV.

2402



Figure 6 Threshold indentation load as a function of Na+-K+ ion-
exchange time for ALS glass at the exchange temperatures indicated.
There is an abrupt increase in threshold load at the shortest exchange
time, and a gradual increase in Pth with increasing exchange time.

of the diffusion coefficient data using linearized coordi-
nates from Equation 2, log10(D) vs. 1/T . The noise in
the composition data is a source of considerable uncer-
tainty in the estimation of the diffusion coefficient when
the diffusion lengths are very small, and therefore only
the three longest ion-exchange times, approximately
20, 30, and 60 min (Table II) were used to estimate dif-
fusion coefficients. Error bars represent one standard
deviation in the measured diffusion coefficient. The ac-
tivation energy for diffusion was Q = 0.75 eV, and
the prefactor D0 = 7.3 × 10−9 m2 s−1, both estimated
from the linear fit shown in Fig. 5. A combination of
Equations 1 and 2 may then be used to predict the de-
gree of ion-exchange within the temperature range of
these experiments (380–420◦C).

3.2. Indentation cracking threshold
Fig. 6 is the result of the indentation threshold tests
for all of the ion-exchange time-temperature combina-
tions, including the unexchanged (as-received) glass.
The most striking feature is the dramatic increase in
Pth at very short exchange times. There are modest
increases in Pth with further tempering. It should be
noted that samples tempered for sixty minutes at all
of the temperatures did not crack at loads within the
capability of the indenter.

3.3. Indentation surface stress estimation
The stress-intensity factor, K R, for a crack created
by a sharp, geometrically similar indenter such as the
Vickers pyramid, can be modeled by [24]

K R = χ P

c3/2
, (3)

where P is the indentation load, c is the crack surface
trace length (as measured from the center of the indenta-
tion impression), and χ is a semi-empirical stress-field

amplitude,

χ = ξ

(
E

H

)1/2

, (4)

where E is the elastic modulus (70 GPa), H is the
Vickers hardness (measured as 5.7 GPa for this glass),
and ξ is a material-invariant constant, taken here as
ξ = 0.016 ± 0.004 [24]. At equilibrium, the stress-
intensity factor of Equation 3 may be equated to the
material toughness, T , which implies that

P

c3/2
0

= T

χ
. (5)

The quantity P/c3/2 is the indentation fracture param-
eter [24], where the subscript “0” indicates the crack
length in the unstressed (base) glass.

The crack length at the threshold indentation load
was measured and is plotted in Fig. 7. It is interesting
to note that the relationship between crack length and
threshold indentation load is linear, but the threshold
load point for the base glass (square point) does not lie
on the line. For comparison, the entire c-P relationship
(c ∼ P2/3) for unexchanged glass is plotted.

Lawn and Fuller [18] derived the stress-intensity fac-
tor due to a strip of stress acting over a circular or semi-
circular crack, with the intention of estimating surface
stresses via indentation fracture. This configuration is
shown in Fig. 8. For a general distribution of stress σ (x)
within a zone d situated at the surface of the semicircu-
lar crack, the stress-intensity factor at the surface, K s,
is [18]

K s = ψ s

c1/2

∫ d

0
[(c/x)1/2 − 1]σ (x) dx . (6)

The Lawn and Fuller analysis is strictly for an embed-
ded circular crack, but it is supposed that the factor ψ s

Figure 7 Radial crack length for the ion-exchanged ALS glass. The
threshold indentation load for the unexchanged glass, 15 N, is shown
as a square, and the crack length—indentation load relationship shown
as a solid line. A dashed line indicates the linear relationship between
threshold crack length and threshold indentation load for the exchanged
glass.

2403



Figure 8 A schematic diagram of the fracture system used to estimate
surface stresses via indentation fracture: an arbitrary stress distribution
σ (x) acts over the strip of depth d located at the mouth of a semi-circular
surface crack. The computed stress-intensity factor of Equation 6 is at
the surface.

sufficiently modifies the analysis to account for crack
geometry and the free surface.

When the surface stress distribution is uniform over
d and equal to σ s, Equation 6 becomes [18]

K s = ψ sσ sd1/2[2 − (d/c)1/2], (7)

and when the strip extends the entire depth of the crack
(d = c), Equation 7 reduces to the well-known result
for a circular crack under uniform stress,

K s = ψ sσ sc1/2. (8)

Alternatively, when the width of the strip of stress is
very thin (d � c), Equation 6 reduces to

K s = 2ψ sσ sd1/2. (9)

The local compressive stresses generated are pro-
portional to the local amount of ion exchange [9, 23],
in reaction to the imposed-volume-strain mechanism
of stress generation in ion-exchange systems [2, 23].
Therefore, the surface stress distribution will ideally
follow the surface distribution of excess K+ (or de-
pleted Na+). However, ion-exchange for long times, or
at temperatures near the softening point of the glass
can result in relaxation of the surface stresses, marked
by a deviation in the correspondence between compo-
sition and stress [25]. It has also been suggested that
a change in thermal expansion coefficient of the ion-
exchanged material can account for some, but not all, of
the composition–stress deviation [26]. In this work, de-
viations from proportional composition-stress depen-
dence will not be considered.

If the compressive stresses are indeed proportional to
the K+ concentrations, a complementary error function
would most closely approximate the stress distribution,
vis-à-vis

σ (x) = σ s
[

1 − erf

(
x

2
√

Dt

)]
. (10)

The substitution of an error function into Equation 6
makes the form of K s cumbersome. Often, the stress at
the surface in an ion-exchanged glass is approximated
by a linear stress profile [27],

σ (x) = σ s(1 − x/d), (x < d). (11)

In this case, the resulting stress-intensity factor is [19]

K s = ψ sσ sd1/2[(4/3) − (d/4c)1/2], (12)

which reduces to

K s = 4

3
ψ sσ sd1/2 (13)

in the limit of d � c.
Extraction of an estimate of the surface stress from

the σ sd1/2 product requires that the depth d of the com-
pressive stresses be estimated. As a compromise be-
tween the known complementary error functional de-
pendence of the K+ ion (and presumably the compres-
sive stresses) and the linearly-decreasing stress stress-
intensity factor of Equation 13, d may estimated as
the length that matches the total “line-force” for the
linearly-decreasing stress distribution of Equation 11
to the stress distribution proportional to local ion con-
centration, Equation 10.

σs
2

π1/2
(Dt)1/2. (14)

Comparison with Equation 14 with the total line force
from the triangular stress distribution of Equation 11,

σsd

2
, (15)

yields a characteristic ion-exchange depth, 〈d〉 of

〈d〉 = 4

π1/2
(Dt)1/2. (16)

At 〈d〉 the complementary error function has decayed
to 0.1% of the surface value, indicating that this is a
good estimate for the ion-exchange depth.

We may combine Equations 3 and 13 to yield the total
stress-intensity factor, K of a crack under combined
surface stress and indentation elastic-plastic mismatch
loading,

K = χ P

c3/2
+ 4

3
ψ sσ sd1/2. (17)

At equilibrium, K = T , and a combination of
Equations 17 and 5 may be rearranged to form

P

c3/2
= P

c3/2
0

+ 4

3

ψ s

χ
σ sd1/2. (18)

Equation 18 implies that the indentation fracture pa-
rameter, P/c3/2, for a surface-stressed glass will be
equal to that of the unstressed glass plus a constant,
and will be invariant with indentation load (or crack
length). Alternatively, a plot of the indentation fracture
parameter as a function of d1/2 will be linear and have
a slope proportional to the ψ sσ s product. Fig. 9 is a
plot, in the manner of Equation 18, of P/c3/2 for the
ion-exchanged specimens of Table I as a function of the
characteristic diffusion length 〈d〉. A solid line is shown
as a best linear fit through the data, where the intercept
has been fixed at the experimentally determined value
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Figure 9 A plot of the indentation fracture parameter, P/c3/2, as a func-
tion of 〈d〉1/2 for the ion-exchange time-temperature combinations in
Table I (open squares). Fits to Equation 18 are shown. The geometry
parameter ψ s is found from the data of Green and Tandon [19] (solid
triangles) to be approximately ψ s = 0.090, leading to an estimation of
the surface stress for the ion-exchange system here as σ s = −1000 MPa.

of P/c3/2
0 = 15.8 MPa

√
m for the unexchanged glass

over an indentation load range of 20–200 N.
Green and Tandon performed indentation stress-

measurement experiments on ion-exchanged soda-lime
glass [19] (the only other attempt of this method on an
ion-exchanged silicate glass known to the authors). It
was shown, for both ion-exchange conditions used, that
the indentation fracture parameter was constant over a
range of crack lengths, consistent with Equation 18. The
average P/c3/2 for each ion-exchanged glass (as well
as P/c3/2

0 = 13.5 MPa
√

m for that particular glass)
is plotted in Fig. 9 versus their own estimates of 〈d〉,
along with a best linear fit shown as a dashed line. It is
evident, from our work and the work of others [19], that
for ion-exchanged glasses, the scaling of Equation 18
is correct.

At this point it is necessary to discuss the value of
ψ s. It is usually assumed that ψ s is approximately unity
[18, 28], as it is only a free-surface modification to a
complete theoretical solution for an embedded circu-
lar crack. Furthermore, it is normally expected that an
experimental value of ψ s derived from uniform-stress
strength testing [29, 30] is sufficient because the uni-
form stress (Equation 8) and the thin-layer-of-stress
(Equations 9 and 13) stress-intensity factors are lim-
iting solutions of the general stress-intensity factor ex-
pression of Equation 6. There is no prima facie reason
to believe that ψ s varies due to details in the surface
stress distribution.

However, there is some disagreement about the
applicability of the indentation stress-measurement
method. The method has been shown to predict cor-
rectly residual stresses of lightly (<100 MPa) compres-
sive thin films [28] on soda-lime glass using ψ s ≈ 1.
The indentation method significantly underestimated
independent stress estimates for heavily (>1 GPa)
compressive [31] dielectric thin films on soda-lime
glass, ion-implanted ceramics and glasses [20, 21], and

possibly overestimated tensile stresses by up to a fac-
tor of two on proton-irradiated glass [18]. Green and
Tandon calculated a surface stress for ion-exchanged
glass (Fig. 9) that was a factor of ten too low, us-
ing ψ s = 0.73 from fracture strength measurements
[19]. It was observed that the radial/median cracks were
“pinched” at the surface; that is, the crack front was ar-
rested within the thin compressive surface layer and did
not reach the surface. This same phenomenon has been
observed by Burnett and Page [20] in ion-implanted ma-
terials, as well as by the authors for the current system.
The crack geometry change caused by “pinching” at the
surface has been deemed to be so severe as to radically
change ψ s, and therefore invalidate the premises upon
which Equation 18 are built [19].

If the crack shape were extraordinarily different from
the assumed half-penny shape, then the constant χ , cou-
pling the indentation load to the stress-intensity factor at
the crack tip (Equation 3), would ostensibly change as
well. However, while the crack shape is affected near
the compressive stress zone at the surface, it is still
roughly semi-circular [19]. Also, it has been shown, ex-
perimentally [17] and theoretically [32], that Equation 3
remains valid for the either the half-penny or radial
crack geometries, and therefore it seems that χ will be
insensitive to small changes in crack geometry.

An alternative interpretation of the discrepancy be-
tween the inferred and real surface stresses is that the
arrest of the crack front within the surface compressive
zone necessarily reduces the compressive stress acting
over the crack surface (stresses not acting over crack
surface do not contribute to the total stress intensity
factor at the crack tip). The coupling term ψ s between
the surface stresses and the crack is therefore greatly di-
minished, but χ remains unchanged and ψ , coupling a
uniform applied stress over such a crack, would remain
of order unity. This, then, is a crack-shape effect; but it
is one that only affects the stress-intensity contribution
from very thin (c � d), very large compressive surface
stresses. The scaling of the model (Equation 18) re-
mains robust, evident from Fig. 9, and therefore a value
of ψ s can be calibrated from a comparison of inde-
pendently measured stress values and the observed ψ s

σ s product. From the stress data of Green and Tandon
[19] and the best fit line of Fig. 9, an average value
of ψ s = 0.090 ± 0.006 is appropriate. This yields a
representative stress value of σ s = −1000 ± 75 MPa
for the ion-exchange system used here. Bradshaw [33]
measured surface stresses of −550 to −700 MPa for
this composition of glass; however, these stresses were
measured after much longer ion-exchange times than
used here (51–122 h). Dwivedi and Green measured a
surface stress of −880 MPa for a 1 h exchange at 500◦C
[14]. In light of the shorter exchange times and lower
temperatures used in this work, stress relaxation is prob-
ably negligible, and the surface stresses estimated by
the indentation method seem reasonable.

4. Initiation fracture model
4.1. Background
Several models of crack initiation at indentation sites
have been posited to explain the existence of the
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indentation threshold for cracking [7, 12, 13]. Much
previous work has noted the increase in resistance to
indentation cracking when compressive stresses are in-
troduced into the surface of glasses, by an increase in
Pth on post-indentation observation [8] and a delay in
radial crack initiation in the indentation load-unload
cycle [10, 34]. Dal Maschio et al. [7] derived an ex-
pression for Pth in ion-exchanged soda-lime glass as
part of a method of determining residual stress profiles.
The analysis assumed that a pre-existing surface stress
over the crack nucleus is essentially uniform. It should
be noted that the residual stresses measured by this
method extended up to 60 µm into the surface, and that
the magnitude of the estimated stresses were no more
than 150 MPa (compressive). The relatively small val-
ues of compressive stress in Dal Maschio’s experiments
were attributed to relaxation phenomena active at high
temperatures and long exchange times in the soda-lime
glass used.

Plastic deformation beneath the indenter generates a
local zone of strain-mismatch, which gives rise to a lo-
calized hoop-tensile stress field that drives cracking at
the indentation site [17, 24]. It is well established that
indentation with a sharp indenter (such as a Vickers
pyramid) generates cracks at the indentation site, irre-
spective of the pre-existing condition of the surface,
which leads to the conclusion that sharp indentation
must nucleate nascent flaws via the plastic deforma-
tion process [11, 35, 36]. It is also observed that radial
cracks are usually formed at the corners of the impres-
sion [17]. Based on these observations, models of crack
nucleation in soda-lime and aluminosilicate glasses at
sharp contacts focus on the shear deformation mecha-
nism that dominates plastic deformation under the high
confining hydrostatic pressures of indentation [37, 38].

A model is developed in this paper that follows from
the work of Cook and Braun [13], which utilizes a
model to explain observations of indentation crack be-
havior in transformation-toughening yttria-tetragonal
zirconia polycrystalline materials. Because compres-
sive surface stresses can be viewed as a local tough-
ening mechanism [34], many of the physical elements
of this model may be used to explain the resistance to
crack initiation that is caused by ion exchange. How-
ever, the inhomogeneity of the toughening due to sur-
face stresses (as compared to a toughening mechanism
that is uniformly distributed throughout the material,
such as phase transformation) requires that the model
be adapted to better suit the physical circumstances.

4.2. Residual indentation stress field
Fig. 10 schematizes the Vickers indentation impression,
crack nucleus, and stress fields used to create the inden-
tation threshold model. A crack nucleus is imagined to
be created by the intersection of shear faults, which are
roughly parallel to the faces of the Vickers indenter. The
nascent radial crack flaw is contained within the defor-
mation zone, and envisioned to be roughly semicircular.
Within the deformation zone, stress is compressive, ex-
cept near the edge of the zone where the stresses acting
over a prospective radial crack increase to their max-

Figure 10 Schematic diagram of the geometry used in the crack initi-
ation model. Shear faults intersect at indentation impression edges to
create a radial crack nucleus of characteristic dimension c. A linearly in-
creasing tensile stress acts over a length s, which unstably propagates the
crack to a final stable configuration outside the indentation deformation
zone.

imum at the edge of the zone. This stress increase is
normally assumed to be linear,

σ inner
r (r ) = σ R

(
r

s

)
, r < s, (19)

where σ R is the amplitude of the residual stresses and s
is the extent of the tensile stress within the deformation
zone. In this model, the center of the prospective radial
crack is centered such that the tensile stress within the
deformation zone acts over half of the crack. Outside the
deformation zone, the tensile stresses decrease rapidly
according to

σ outer
r (r ) = σ R

(
a

r + a − s

)3

, r > s. (20)

This is the familiar 1/r3 type stress field of an ex-
panding cavity within an elastic medium, generally
used to model the stress field at an elastic-plastic in-
dentation [39–41]. The asymptote is chosen to be at
the center of the indentation impression; a convention
followed by many authors [12, 39–41], although others
have chosen the asymptote to lie at the beginning of the
tensile stress zone within the plastic deformation zone
(the coordinate origin as defined in Fig. 10) [13].

The geometrical similarity of the problem allows
for some simplification by non-dimensionalization.
Dimensionless variables are set as [13]

ρ = r/a

C = c/a (21)

S = s/a

where a is defined as the characteristic indentation
impression dimension through the hardness, H , for a
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Vickers indenter,

H = P

2a2
. (22)

The normalized crack length, C , is constrained to
be less than or equal to the dimensionless length of
the intra-deformation zone tensile stress zone, S. With
Fig. 10, a fracture-mechanics based description of the
conditions necessary for crack initiation from shear-
fault derived crack nuclei may be derived.

The stress-intensity factor for a circular crack under
the action of a radially symmetric stress distribution is
[42]

K (c) = ψ
1

C1/2

∫ c

0

rσ (r )dr

(c2 − r2)1/2
, (23)

where ψ is an adjustable geometry parameter, such that
ψ = 2/π1/2 for an embedded circular crack under uni-
form applied stress [13]. We are concerned with the
mechanics of radial crack initiation, and not stabiliza-
tion, and therefore the stress field of Equation 19 is
used to generate the stress-intensity factor that con-
trols initiation of a shear-nucleated crack. Combination
of Equation 19 with Equation 23, and normalizing via
the variables of Equation 21, the stress-intensity factor
takes the form

K (C) = ψ inner
nuc a1/2 1

c1/2

∫ c

0

σRρ2dρ

S(C2 − ρ2)1/2
, (24)

where ψ inner
nuc is the geometry factor specifically cou-

pling the tensile stress inside the deformation zone with
the crack nucleus. The residual stress amplitude can be
reduced to a dimensionless variable, αR, via normal-
ization by the material hardness,

σ R = αR H. (25)

Completion of the integral in Equation 24 gives the
stress-intensity factor as

K (C) = (Ha1/2)
π

4
ψ inner

nuc αR
C3/2

S
= P1/4

th

(
T

P1/4
th,0

)
,

(26)

which is the product of a load-dependent scaling term,
(Ha1/2), and a scale-invariant geometrical term. The
increasing stress within the deformation zone gives rise
to a strongly destabilizing stress-intensity factor field–
stronger than a uniform tensile stress stress-intensity
factor (K ∼ c1/2). By setting Equation 26 equal to the
material toughness, T , and substituting in the hardness
relationship (Equation 25), the indentation threshold
load in the unstressed material, Pth,0 can be found in
terms of the critical dimensionless crack nucleus size,
Cnuc:

P1/4
th,0 = T

H 3/4

29/4

πψ inner
nuc αR

S

C3/2
nuc

. (27)

When P is equal to or larger than Pth, the nascent
crack flaw will propagate unstably out of the deforma-
tion zone until stable equilibrium (K = T, dK/dc <

0) is reached in the diminishing, farfield stress of
Equation 20.

4.3. Ion-exchange stress field
Description of the effect of the ion-exchange stresses
on crack initiation is difficult, because the compres-
sive stresses generated by the ion-exchange process
decrease sharply with depth into the material. Further-
more, the ion-exchange stress field breaks the geometri-
cal similarity between the indentation impression size,
crack nucleus, and net stress field. In this model, we
use the stress-intensity factor of Equation 12 [19] to
describe the effects of the ion-exchange stresses on the
crack nucleus.

Because the ion-exchange depth does not share sim-
ilarity with the indentation contact, only the crack size
may be normalized, which transforms Equation 12 into

K s
nuc = ψ s

nucσ
sd1/2

[(
4

3

)
− 1

2a1/2
(d/Cnuc)1/2

]
. (28)

Combination of Equations 26 and 28 yields the total
stress-intensity factor for the crack nucleus under the
influence of the residual and ion-exchange stress fields:

K total
nuc = (Ha1/2)

π

4
ψ inner

nuc αR C3/2
nuc

S
+ ψ s

nucσ
sd1/2

×
[(

4

3

)
− 1

2a1/2
(d/Cnuc)1/2

]
. (29)

Using the relationship between the indentation load P
and the impression dimension a (Equation 22), and
equating the stress-intensity factor to the toughness at
incipient radial crack formation, Equation 29 becomes

K total
nuc = T = P1/4

th

T

P1/4
th,0

+ 4

3
ψ s

nucσ
sd1/2

− 1

P1/4
th

ψ s
nucσ

sd1/2
(

3H 1/4

23/4

d1/2

C1/2
nuc

)
, (30)

If it is recognized that within Equation 30 there is
a stress-intensity factor-like term due to the surface
stresses that is independent of any indentation or crack-
length variable, we may define it as a toughening
[43, 44], here, called the surface-stress initiation tough-
nening, T s:

T s = −4

3
ψ s

nucσ
sd1/2 (31)

where the negative sign is included so that compressive
surface stresses naturally increase the initiation thresh-
old. Equation 30 may be rearranged to yield a solu-
tion for Pth in terms of the initiation threshold in the
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unstressed glass,

P1/4
th = P1/4

th,0

2T

{
(T + T s) +

[
(T + T s)2

− 3H 1/4

23/4

T T s

P1/4
th,0

( 〈d〉
Cnuc

)1/2]1/2
}

. (32)

Similar expressions for T s and the initiation thresh-
old load may easily be derived for a strip of uniform
stress at the surface (Equation 7). The use of T s makes
Equation 32 reducible to a form similar to that ex-
pected for a change in homogeneously-distributed ma-
terial toughness, �T (with no other change in material
properties),

P1/4
th = P1/4

th,0

T
(T + �T ), (33)

except that the increase in the initiation threshold for
the surface-stressed material involves a cross-term that
contains information about the length scales of the sur-
face stress and the crack nucleus. If the stress is uniform
over the crack nucleus, the expression for Pth is

P1/4
th = TP1/4

th,0(2H )1/4

T (2H )1/4 + ψ s
nucσ

sC1/2
nuc P1/4

th,0

= P1/4
th,0

T

(T − T s)
, (34)

identical in form to the expression derived by Dal
Maschio et al. [7]. It can readily be verified that the
surface-stress initiation toughening for uniform stress
is T s = −ψ s

nucσ
sC1/2

nuc a1/2
th,0, where ath,0 is the hardness

impression dimension at the threshold load in the un-
stressed material.

4.4. Application of the model
to experimental data

The results of Fig. 9 indicate that there is a single repre-
sentative value of the characteristic surface stress, σ s.
If σ s is chosen to be fixed for every experiment, then
Equation 30 is a varying function of d only. For con-
sistency with the crack length line force estimation re-
sults, the depth of the stress, d, acting over a nascent
radial crack will be estimated as the characteristic ion-
exchange depth, 〈d〉, as per Equation 16.

Inspection of Equation 32 suggests that P1/4
th is

roughly linear in 〈d〉1/2, and therefore these are used
as the dependent and independent variables for data fit-
ting in Fig. 11. The fixed parameters in the model are set
as follows: Pth,0 = 15 N, σ s = −1000 MPa, H = 5.7
GPa, and T = 0.9 MPa

√
m from indentation toughness

estimation (Equation 5). The best fit of Equation 32
shown in Fig. 11 as a solid line, with the best fit param-
eters ψ s

nuc = 0.267 ± 0.02 and Cnuc = 0.170 ± 0.09. If
the surface-stress initiation toughening (Equation 31)
is approximated as a homogeneous toughness increase
(Equation 33), then the predicted increase in initiation

Figure 11 Indentation cracking threshold data of Fig. 6 replotted in the
manner of Equation 32, P1/4

th vs. 〈d〉1/2. The solid line is a best fit of
the full indentation threshold model, Equation 32, and the dashed line
is the asymptotic approximation of Equation 33, with the change in
toughness approximated as T s.

threshold (with ψ s
nuc = 0.267 and σ s = −1000 MPa)

is shown in Fig. 11 as a dashed line.

5. Discussion
A fracture-mechanics based model for the indentation
threshold load in Na+- K+ ion-exchanged ALS glass
has been derived and shown to describe experimental
data over a wide range of exchange conditions. The
threshold load is a measure of the conditions for ini-
tiation of a metastable crack nucleus, located within
the indentation contact deformation zone, into a well-
developed radial crack, extending beyond the zone
boundary. The physical basis of the model is that on
increasing indentation load there is a competition be-
tween the increasing size of the nucleus and the inden-
tation tensile zone (which favor initiation) and the con-
comitant extent into the compressive ion-exchange field
(which opposes initiation). The threshold load is then a
measure of the critical contact dimension at which the
crack driving force deriving from the combination of
nucleus and zone sizes surpasses the resistive forces
associated with material toughness and compressive
stress effects.

The expected threshold load change has been shown
to be dependent on two terms: a characteristic sur-
face toughening parameter, independent of any crack
nucleus size, and another term that relates the rela-
tive scale of the surface stresses and the crack nu-
cleus. The characteristic surface toughening is anal-
ogous to a homogeneous toughening mechanism (for
example, the inclusion of a pressure-induced phase-
transforming material in a matrix). The model partially
bridges two limiting effects on the initiation behavior—
that of uniform toughening, and that of uniform super-
imposed stress. Fig. 12 is a plot that reproduces the fit
of Fig. 11 over a broader range. Also shown in Fig. 12
is the expected increase in threshold with the surface-
stress toughening-only approximation (with constant
ψ s

nuc = 0.267 and σ s = −1000 MPa) and the threshold
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Figure 12 Indentation cracking threshold load vs. characteristic ion-
exchange depth. The fit to the full indentation model from Figure
11 is shown, as well as the surface-stress indentation toughening ap-
proximation (Equation 33) and uniform stress model (Equation 34).
All P1/4

th vs. 〈d〉1/2 relations were generated with ψ s
nuc = 0.267 and

σ s = −1000 MPa. The crack nucleus dimension, cnuc, is plotted as well.
When 〈d〉 exceeds cnuc, the full indentation model is invalid. At very
small 〈d〉, the the surface-stress indentation toughening approximation
is accurate; at very large 〈d〉, the uniform stress model is appropriate.

with a uniform applied stress (σ s = −1000 MPa). The
triangular strip-of-stress stress-intensity-factor solution
(Equation 12) requires that c > d to be applicable [18],
which means that the full threshold model breaks down
when cnuc < 〈d〉. A line of calculated cnuc is shown in
Fig. 12—when cnuc exceeds 〈d〉, neither the model of
Equation 32 nor the uniform superimposed stress model
of Equation 34 strictly applies. A bridging model can
be derived for cnuc > 〈d〉 > ∞ that is cubic in P1/4

th us-
ing the results of Lawn and Fuller [18]; however, the
result is complicated and not needed in this work. For
the large stresses and shallow residual stress depths in
the tempered glass system here, this is unlikely to be a
practical complication—the model shown is expected
to hold until a threshold load of 1600 N is reached. How-
ever, it may become more important for systems with
deeper residual stress depths, or for indenter geometries
that can reduce the cracking threshold to scales com-
mensurate with the scale of the residual stress depth,
such as a cube-corner pyramid [45].

The geometry factor coupling the surface stress to the
crack nucleus, ψ s

nuc = 0.267, is considerably less than
the normally expected ψ s ≈ 1 (Section 3.3). This may
be due to several factors, such as the shape and orien-
tation of the nucleus. The geometry factor coupling the
residual indentation stress field to the crack nucleus is
estimated from the micromechanical description of the
threshold load in the unstressed glass (Equation 27) as
ψ inner

nuc = 0.41, with Cnuc = 0.17, and αR = 0.170 and
S = 0.148 from the elastic-plastic analysis of Chiang
et al. [39]. Although the observed Cnuc > S, which im-
plies, within the framework of the model, that the crack
nucleus is not contained within the hardness impression
(see Fig. 10), the discrepancy is not important consider-
ing the uncertainty involved in estimation of Cnuc and S.

Cnuc and ψ inner
nuc are not independently estimable from

the threshold load in the unstressed material, and the
agreement between ψ inner

nuc and ψ s
nuc demonstrates that

while the crack nuclei are somewhat unlike a semi-
circular surface-located crack (ψ s ≈ 1), the assumed
geometry of the problem and subsequent threshold load
scaling models are consistent.

It is noted that an implicit assumption in Equation 32
is that the magnitude of Cnuc is unaffected by the ion-
exchange process. This seems reasonable in light of
the experimental observation that plastic deformation,
as measured by the hardness, H , is largely unaffected
by the tempering treatment. Cnuc could certainly be
quite different from material to material, if the dom-
inant mode of plastic deformation were to change (for
example, the predominant densification mode of de-
formation for fused silica vs. the shear-slip mode of
deformation as for the glass used here). The dominant
effect of an isolated change in Cnuc due to plasticity
mechanism modifications or changes (as might be the
case, for example, for ion-implanted glasses and ceram-
ics [20, 21]) would be pronounced in the unstressed-
material threshold load through a Pth,0 ∼ C−6

nuc depen-
dence (Equation 27). For example, a 10% reduction in
Cnuc will double the threshold load.

As part of the experimental programme, kinetic data
for ion-exchange in this system have also been mea-
sured. A combination of the kinetic data and fracture
mechanics allows us to construct a map of the in-
dentation threshold for a range of ion-exchange time-
temperature conditions. Fig. 13 is a contour plot of the
predicted indentation cracking threshold load as a func-
tion of ion-exchange temperature and time. The tem-
perature range of the predictions has been extended
±30◦C from the experimental conditions, and the ex-
change time has been extrapolated to 120 min. Fig. 13
demonstrates compactly the experimental observation
that there is an abrupt increase in Pth for very short ex-
change times, regardless of the exchange temperature.
Unsurprisingly, exchange at higher temperatures leads
to a greater penetration of K+ into the surface of the

Figure 13 Map of predicted indentation crack threshold load, Pth, as
a function of ion-exchange time and temperature, generated with the
kinetic data of Equation 2 and the fracture model of Equation 32 with
parameters found from the fit of Fig. 11.
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glass, and a correspondingly larger Pth, with respect to
time.

Fig. 13 is only a guide to the expected amount of con-
tact fracture resistance conferred on an ion-exchanged
glass; many deviations can be expected in practice.
There is considerable uncertainty in determination of
the threshold load, evident from Fig. 3. Also, only the
degree of radial crack initiation attenuation is consid-
ered: at larger loads than those used here, critical sub-
surface flaws may initiate beneath the indenter (the
median crack system) [17]. It may well be that sur-
face stresses have a diminishing effect on the sub-
surface initiating mechanics, and therefore strength-
degrading flaws may be initiated outside the framework
of the current analysis. However, it may be concluded
that the compressive stresses of ion-exchange not only
strengthen a component with a pre-existing flaw pop-
ulation, but buttress that improved strength with in-
creased damage resistance.

Also, this work is concerned only with the radial
cracking system and not lateral cracking (i.e., cracks ap-
proximately parallel to the surface). This is the cracking
system responsible for chipping and wear of surfaces.
It was observed here, as well as elsewhere [10], that
lateral cracking is somewhat enhanced by surface com-
pressive stresses. While lateral cracking is an important
damage mechanism, it is not particularly deleterious to
brittle strength. Therefore, Fig. 13 is not a useful tool if
surface wear or retention of optical quality under abra-
sive conditions is a concern.
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